Investiciencias.com

Se extiende la temporada de derretimiento en el Ártico

Se extiende la temporada de derretimiento en el Ártico

       

Tomado de:http://ciencia.nasa.gov/ciencias-especiales/01apr_arcticice/

Consultado: 13 de abril de 2014. 9:32a.m.

12 de abril de 2014: Un nuevo estudio, llevado a cabo por investigadores del Centro Nacional de Datos sobre la Nieve y el Hielo (National Snow and Ice Data Center, o NSIDC, por su sigla en idioma inglés) y de la NASA, demuestra que la temporada de derretimiento del hielo marítimo del Ártico se está extendiendo por varios días cada década. La temporada de derretimiento se inició antes y está provocando que, en algunos lugares, el océano Ártico absorba la radiación solar adicional suficiente como para derretir hasta 1,20 metro (4 pies) del espesor de la capa del casquete de hielo del Ártico.

“El Ártico se está calentando y está causando que la temporada de derretimiento dure más”, dijo Julienne Stroeve, una científica de alto rango del NSIDC, ubicado en Boulder, quien también es una de las autoras principales del nuevo estudio, el cual ha sido aceptado para su publicación en la revista científica Geophysical Research Letters. “La prolongación de la temporada de derretimiento está permitiendo que se almacene más energía del Sol en el océano y que aumente el derretimiento del hielo durante el verano, debilitando de este modo la cubierta de hielo marítima”.


En un breve video se resumen los nuevos hallazgos relacionados con el hielo del mar en el Ártico y el calentamiento de los océanos. Reproducir el video, en idioma inglés

El hielo del mar en el Ártico se ha reducido abruptamente durante las últimas cuatro décadas. La cubierta de hielo del mar se está encogiendo y también está adelgazando, lo que hace pensar a los científicos que este siglo, durante el verano (boreal), podría haber un océano Ártico sin hielo. Según los registros satelitales, en los últimos siete años se han producido las siete extensiones de hielo marítimo más bajas de septiembre.

Para estudiar el inicio de la evolución del derretimiento del hielo marítimo y las fechas de congelamiento desde 1979 hasta el presente, el equipo de Stroeve utilizó datos de los sensores de microondas pasivos proporcionados por el Radiómetro Nimbus-7 de Microondas con Barrido Multifrecuencial (Nimbus-7 Scanning Multichannel Microwave Radiometer, en idioma inglés), de la NASA, así como del Generador de Imágenes y Sensor Especial de Microondas y del sensor SSMIS, colocados a bordo de la nave espacial del Programa de Satélites Meteorológicos de Defensa (Defense Meteorological Satellite Program, en idioma inglés). Cuando el hielo y la nieve comienzan a derretirse, la presencia de agua provoca picos en la radiación de microondas que emiten los copos de nieve, y esto es lo que pueden detectar dichos sensores.

Los resultados demuestran que, a pesar de que la temporada de derretimiento se está alargando en ambos extremos, con un precoz derretimiento que comenzó en la primavera (boreal) y un tardío congelamiento que se produjo en el invierno (boreal), el fenómeno predominante que prolonga el derretimiento es el inicio tardío de la temporada de congelamiento. Algunas áreas, como los mares de Beaufort y Chukchi, se están congelando entre 6 y 11 días más tarde por década. Aunque las variaciones en el inicio del derretimiento son más pequeñas, el ritmo del comienzo de la temporada de derretimiento tiene un impacto mayor sobre la cantidad de radiación solar que absorbe el océano porque coincide con el momento en el cual el Sol está más alto y brilla más en el cielo del Ártico.

A pesar de las grandes variaciones regionales en el inicio y en la finalización de la temporada de derretimiento, la temporada de derretimiento del Ártico se ha extendido, en promedio, 5 días por década desde 1979 hasta 2013.

Visite nasa.gov para obtener más información sobre esta investigación.

Créditos y Contactos
Funcionaria Responsable de NASA: Ruth Netting
Editor de Producción: Dr. Tony Phillips
Traducción al Español:
Editora en Español:
Formato:

Valoración del Usuario: 0 / 5

estrella inactivaestrella inactivaestrella inactivaestrella inactivaestrella inactiva
 

Hallazgo clave en el proceso de fotosíntesis

 

Tomado de: http://www.mincyt.gob.ar/noticias/hallazgo-clave-en-el-proceso-de-fotosintesis-9902

Consultado el 12 de abril de 2014. 6:03 p.m.

Científicos argentinos descubrieron una nueva forma por la que el cloroplasto, encargado de la fotosíntesis, afecta la expresión de genes frente a la variación en las condiciones de luminosidad.

Hallazgo clave en el proceso de fotosíntesis

(izq. a der.) Micaela Godoy Herz, Lino Barañao y Alberto Kornblihtt durante la presentación.

El ministro de Ciencia, Tecnología e Innovación Productiva, Dr. Lino Barañao, encabezó la presentación del Dr. Alberto Kornblihtt,  sobre el descubrimiento de un nuevo mecanismo que interviene en la regulación de la respuesta de las plantas a la luz. Esta investigación, realizada por su equipo del Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE) dependiente del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y la Universidad de Buenos Aires (UBA), fue publicada hoy en la revista Science. El paper, destacado por la prestigiosa publicación científica, lleva las firmas de sus primeros autores el Dr. Ezequiel Petrillo, quien se encuentra realizando un postdoctorado en Max F. Perutz Laboratories de la Universidad de Viena, Austria, y la becaria de doctorado Micaela Godoy Herz del IFIByNE.

Barañao: “En una década se ha multiplicado por cien la cantidad de publicaciones de argentinos en revistas científicas de primer nivel”. “Afortunadamente podemos mostrar que la ciencia íntegramente realizada en Argentina es altamente competitiva” finalizó el titular de la cartera de Ciencia.

Al respecto, el titular de la cartera de Ciencia aseguró que “en una década se ha multiplicado por cien la cantidad de publicaciones de argentinos en revistas científicas de primer nivel”  y agregó que “antes para que un investigador publicara tenía que ir a trabajar a otro país o hacer una cooperación con institutos de investigación extranjeros”. Para finalizar, el ministro Barañao expresó que “afortunadamente podemos mostrar que la ciencia íntegramente realizada en Argentina es altamente competitiva”.    

La fotosíntesis, el proceso a través del cual las células de las plantas y algas transforman sustancias inorgánicas en orgánicas a través del uso de energía luminosa, es un mecanismo que fue descripto en profundidad a partir del siglo XIX. Sin embargo, hasta ahora se desconocía que la fotosíntesis también sensa la luz para controlar al núcleo de la célula vegetal y regular cuántas proteínas distintas puede fabricar cada uno de sus genes, en respuesta a diferentes condiciones de luz/oscuridad.

Los investigadores demostraron que este sensor que manda la señal al núcleo es el cloroplasto, la organela encargada de la fotosíntesis. “Al ser iluminadas, las plantas cambian el splicing alternativo de diversos genes respecto de lo que ocurre en oscuridad”, comenta Alberto Kornblihtt, investigador superior del CONICET en el IFIBYNE, profesor en la Facultad de Ciencias Exactas y Naturales (FCEyN-UBA) y director del estudio.

Frente a las variaciones en la intensidad de la luz, el cloroplasto envía una señal al núcleo de la célula, que modifica el splicing alternativo de un gen y desencadena una serie de respuestas en la planta.

El splicing alternativo es el mecanismo por el cual se pueden obtener distintas proteínas a partir de un mismo gen a través del corte y pegado selectivo de secciones del Ácido ribonucleico (ARN) mensajero, que es el “molde” de la información contenida dentro del gen.

El equipo descubrió que la señal generada por el cloroplasto afecta las proporciones de los tres ARN mensajeros (ARNm1, ARNm2 y ARNm3) obtenidos a partir del splicing alternativo de un gen en particular. Mientras que las formas 2 y 3 son retenidas en el núcleo, el ARNm1 pasa al citoplasma de la célula, donde es traducido a la proteína At-RS31.

Justamente, la señal que envía el cloroplasto al núcleo aumenta la proporción del ARNm1 y por lo tanto de la proteína. Esta señal deja de enviarse durante grandes períodos de oscuridad o de baja intensidad lumínica, y como resultado las plantas sufren cambios importantes: son más pequeñas, amarillentas y en ellas la clorofila se degrada más rápidamente. “Es decir que son menos resistentes a condiciones adversas”, comenta Ezequiel Petrillo, primer autor del estudio.

Si bien los investigadores continúan estudiando sobre qué mecanismos celulares actúa At-RS31, sí se conoce que esta proteína es un factor de splicing, es decir que actúa y modifica el splicing alternativo de otros genes. “Esta regulación es importante para la planta, ya que si se interrumpe este proceso tiene serias dificultades para crecer y desarrollarse bien; no en ciclos normales, sino en situaciones extremas ya sea de luz u oscuridad prolongadas”, analiza Kornblihtt.

Pero además durante el estudio los investigadores demostraron que la señal emitida por el cloroplasto puede viajar desde las hojas hasta las raíces, cuyas células no tienen esta organela, y modificar el splicing alternativo que ocurre en sus núcleos. “La señal generada por el cloroplasto en respuesta a la luz en las hojas es capaz de comunicarle a los tejidos no fotosintéticos -como la raíz- la misma información, gatillando cambios similares en la expresión génica de estos tejidos distantes”, detalla Petrillo.

Entre el 2003 y el 2011, el equipo de investigación recibió subsidios de la Agencia Nacional de Promoción Científica y Tecnológica, dependiente de la cartera de Ciencia, por un total de $3.462.548. También recibieron aportes del CONICET, la Universidad de Buenos Aires, el Howard Hughes Medical Institute y la Red Europea de Splicing Alternativo (EURASNET).

 

Historia evolutiva

Kornblihtt explica que los cloroplastos eran originariamente bacterias fotosintéticas y que hace aproximadamente 1.500 millones de años fueron incorporados a otras células ya existentes, con las cuales establecieron una relación simbiótica.

Hasta ahora se conocía que el cloroplasto provee a la célula la capacidad de hacer fotosíntesis; sin embargo la descripción de su rol como sensor de la intensidad de luz y su regulación del splicing alternativo de genes abre la puerta a investigaciones futuras.

“Ya no basta con saber qué genes están prendidos o apagados en células animales y vegetales”, enfatiza Kornblihtt, “en el caso de aquellos que están encendidos, hay que conocer qué variante de la proteína producen y en qué condiciones para poder determinar su rol”.

 

Autores de la investigación

- Ezequiel Petrillo. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Micaela A. Godoy Herz. Becaria doctoral. IFIBYNE.

- Armin Fuchs. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Dominik Reifer. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- John Fuller. Instituto James Hutton, Invergowrie. Universidad de Dundee. Escocia.

- Marcelo J. Yanovsky. Investigador independiente. Instituto de Investigaciones Bioquímicas   de Buenos Aires. Fundación Instituto Leloir.

- Craig Simpson. Instituto James Hutton, Invergowrie. Universidad de Dundee. Escocia.

- John W. S. Brown. Instituto James Hutton, Invergowrie. Universidad de Dundee. Escocia.

- Andrea Barta. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Maria Kalyna. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Alberto R. Kornblihtt. Investigador superior. IFIBYNE.