Investiciencias.com

Hallazgo clave en el proceso de fotosíntesis

Hallazgo clave en el proceso de fotosíntesis

 

Tomado de: http://www.mincyt.gob.ar/noticias/hallazgo-clave-en-el-proceso-de-fotosintesis-9902

Consultado el 12 de abril de 2014. 6:03 p.m.

Científicos argentinos descubrieron una nueva forma por la que el cloroplasto, encargado de la fotosíntesis, afecta la expresión de genes frente a la variación en las condiciones de luminosidad.

Hallazgo clave en el proceso de fotosíntesis

(izq. a der.) Micaela Godoy Herz, Lino Barañao y Alberto Kornblihtt durante la presentación.

El ministro de Ciencia, Tecnología e Innovación Productiva, Dr. Lino Barañao, encabezó la presentación del Dr. Alberto Kornblihtt,  sobre el descubrimiento de un nuevo mecanismo que interviene en la regulación de la respuesta de las plantas a la luz. Esta investigación, realizada por su equipo del Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE) dependiente del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y la Universidad de Buenos Aires (UBA), fue publicada hoy en la revista Science. El paper, destacado por la prestigiosa publicación científica, lleva las firmas de sus primeros autores el Dr. Ezequiel Petrillo, quien se encuentra realizando un postdoctorado en Max F. Perutz Laboratories de la Universidad de Viena, Austria, y la becaria de doctorado Micaela Godoy Herz del IFIByNE.

Barañao: “En una década se ha multiplicado por cien la cantidad de publicaciones de argentinos en revistas científicas de primer nivel”. “Afortunadamente podemos mostrar que la ciencia íntegramente realizada en Argentina es altamente competitiva” finalizó el titular de la cartera de Ciencia.

Al respecto, el titular de la cartera de Ciencia aseguró que “en una década se ha multiplicado por cien la cantidad de publicaciones de argentinos en revistas científicas de primer nivel”  y agregó que “antes para que un investigador publicara tenía que ir a trabajar a otro país o hacer una cooperación con institutos de investigación extranjeros”. Para finalizar, el ministro Barañao expresó que “afortunadamente podemos mostrar que la ciencia íntegramente realizada en Argentina es altamente competitiva”.    

La fotosíntesis, el proceso a través del cual las células de las plantas y algas transforman sustancias inorgánicas en orgánicas a través del uso de energía luminosa, es un mecanismo que fue descripto en profundidad a partir del siglo XIX. Sin embargo, hasta ahora se desconocía que la fotosíntesis también sensa la luz para controlar al núcleo de la célula vegetal y regular cuántas proteínas distintas puede fabricar cada uno de sus genes, en respuesta a diferentes condiciones de luz/oscuridad.

Los investigadores demostraron que este sensor que manda la señal al núcleo es el cloroplasto, la organela encargada de la fotosíntesis. “Al ser iluminadas, las plantas cambian el splicing alternativo de diversos genes respecto de lo que ocurre en oscuridad”, comenta Alberto Kornblihtt, investigador superior del CONICET en el IFIBYNE, profesor en la Facultad de Ciencias Exactas y Naturales (FCEyN-UBA) y director del estudio.

Frente a las variaciones en la intensidad de la luz, el cloroplasto envía una señal al núcleo de la célula, que modifica el splicing alternativo de un gen y desencadena una serie de respuestas en la planta.

El splicing alternativo es el mecanismo por el cual se pueden obtener distintas proteínas a partir de un mismo gen a través del corte y pegado selectivo de secciones del Ácido ribonucleico (ARN) mensajero, que es el “molde” de la información contenida dentro del gen.

El equipo descubrió que la señal generada por el cloroplasto afecta las proporciones de los tres ARN mensajeros (ARNm1, ARNm2 y ARNm3) obtenidos a partir del splicing alternativo de un gen en particular. Mientras que las formas 2 y 3 son retenidas en el núcleo, el ARNm1 pasa al citoplasma de la célula, donde es traducido a la proteína At-RS31.

Justamente, la señal que envía el cloroplasto al núcleo aumenta la proporción del ARNm1 y por lo tanto de la proteína. Esta señal deja de enviarse durante grandes períodos de oscuridad o de baja intensidad lumínica, y como resultado las plantas sufren cambios importantes: son más pequeñas, amarillentas y en ellas la clorofila se degrada más rápidamente. “Es decir que son menos resistentes a condiciones adversas”, comenta Ezequiel Petrillo, primer autor del estudio.

Si bien los investigadores continúan estudiando sobre qué mecanismos celulares actúa At-RS31, sí se conoce que esta proteína es un factor de splicing, es decir que actúa y modifica el splicing alternativo de otros genes. “Esta regulación es importante para la planta, ya que si se interrumpe este proceso tiene serias dificultades para crecer y desarrollarse bien; no en ciclos normales, sino en situaciones extremas ya sea de luz u oscuridad prolongadas”, analiza Kornblihtt.

Pero además durante el estudio los investigadores demostraron que la señal emitida por el cloroplasto puede viajar desde las hojas hasta las raíces, cuyas células no tienen esta organela, y modificar el splicing alternativo que ocurre en sus núcleos. “La señal generada por el cloroplasto en respuesta a la luz en las hojas es capaz de comunicarle a los tejidos no fotosintéticos -como la raíz- la misma información, gatillando cambios similares en la expresión génica de estos tejidos distantes”, detalla Petrillo.

Entre el 2003 y el 2011, el equipo de investigación recibió subsidios de la Agencia Nacional de Promoción Científica y Tecnológica, dependiente de la cartera de Ciencia, por un total de $3.462.548. También recibieron aportes del CONICET, la Universidad de Buenos Aires, el Howard Hughes Medical Institute y la Red Europea de Splicing Alternativo (EURASNET).

 

Historia evolutiva

Kornblihtt explica que los cloroplastos eran originariamente bacterias fotosintéticas y que hace aproximadamente 1.500 millones de años fueron incorporados a otras células ya existentes, con las cuales establecieron una relación simbiótica.

Hasta ahora se conocía que el cloroplasto provee a la célula la capacidad de hacer fotosíntesis; sin embargo la descripción de su rol como sensor de la intensidad de luz y su regulación del splicing alternativo de genes abre la puerta a investigaciones futuras.

“Ya no basta con saber qué genes están prendidos o apagados en células animales y vegetales”, enfatiza Kornblihtt, “en el caso de aquellos que están encendidos, hay que conocer qué variante de la proteína producen y en qué condiciones para poder determinar su rol”.

 

Autores de la investigación

- Ezequiel Petrillo. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Micaela A. Godoy Herz. Becaria doctoral. IFIBYNE.

- Armin Fuchs. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Dominik Reifer. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- John Fuller. Instituto James Hutton, Invergowrie. Universidad de Dundee. Escocia.

- Marcelo J. Yanovsky. Investigador independiente. Instituto de Investigaciones Bioquímicas   de Buenos Aires. Fundación Instituto Leloir.

- Craig Simpson. Instituto James Hutton, Invergowrie. Universidad de Dundee. Escocia.

- John W. S. Brown. Instituto James Hutton, Invergowrie. Universidad de Dundee. Escocia.

- Andrea Barta. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Maria Kalyna. Instituto Max F. Perutz, Universidad Médica de Viena. Austria.

- Alberto R. Kornblihtt. Investigador superior. IFIBYNE.

Sistema Endocrino

Este sistema se encuentra formado por todas las glándulas que tiene nuestro cuerpo, existen dos clases de glándulas, las endocrinas y las exocrinas, esto depende del lugar en el que liberan las hormonas, las endocrinas las liberan al torrente sanguíneo y las exocrinas al exterior del cuerpo.

Primero vamos a conocer qué es una hormona: es una sustancia química secretada por células de una parte del cuerpo, en este caso las glándulas, que actúa sobre las células blanco. Existen cuatro tipo de sustancias liberadas: los aminoácidos, los péptidos y proteínas, los esteroides y las prostaglandinas.

Los animales regulan la producción de hormonas por medio de un mecanismo lllamado retroalimentación negativa, esto significa que las hormonas causan efectos en las celulas blanco que luego inhiben la secreción de esa hormona, esto con el fin de mantener la producción exagerada de éstas ya que son sustancias muy fuertes que pueden generar cambios drásticos en el organismo y no deben actuar por tiempo muy prolongado.

Glándulas endocrinas: reciben este nombre porque liberan las hormonas al interior del torrente sanguíneo para que sean transportadas a las partes que el cuerpo necesita, en la imagen b, encuenttras la estructura y funcionamiento de éstas. 

Glándulas exocrinas: reciben este nombre porque liberan las hormonas al exterior del cuerpo, la imágen a, te muestra su estructura y funcionamiento.

 

glandulas endocrinas y exocrinas

 

Pero es importante que conozcas cómo funciona una hormona; estas sustancias actúan enlazándose a receptores específicos sobre las células blanco. Como casi todas las células tienen aporte sanguíneo, cuando las hormonas lpasan a la sangre llegan a casi todas la células del cuerpo, por esto es necesario ejercer un control y permitir que actúen solo en algunas celulas blanco. Recuerda que las céluas tienen en su membrana receptores que permiten la entrada de sustancias, en este caso hay receptores específicos para cada tipo de hormona y si una célula blanco no lo tiene la hormona liberada no actuará sobre ella. Además la misma hormona puede tener efectos diferentes, dependiendo de la célula blanco con la que une.

 

Veamos en la siguiente tabla algunas hormonas endocrinas y su función

 

hipotálamo

 

 

 

 

Hormona antidiuretica (ADH)

Oxitocina

 

 

 

Promueve la reabsorción de agua en los riñones

Constriñe arteiolas

En las mujeres, estimuola la contracción de los músculos uterinos durante el parto, la produción de leche e interviene en el comportamiento materno.

En los varones, ocasiona la eyaculación o salida de espermatozoides. 

hipófisis

Hormona folículo estimulante (FHS)

Hormona luteinizante

Hormona estimulante de la tiroides

Hormona del crecimiento

Hormona

adrenocorticotrópica (ACTH)

Prolactina 

En las mujeres estimula el crecimiento del folículo, secreción de estrógenos y la ovulación; en los hombres estimula la espermatogénesis

En las mujeres estimula la ovulación, el crecimiento del cuerpo lúteo y la secreción de estrógenos v progesterona. en los hombres estimula la secreción de la progesterona.

Estimula la tiroides para que libere tiroxina

Estimula el crecimiento, la síntesis protéica y el metabolismo de grasas; inhibe el metabolismo de azúcares

Estimula la corteza suprarrenal para que libere hormonas, especialmente glucocorticoides.

 

Estimula la síntesis de leche y su secreción en las glándulas mamarias

tiroides

Tiroides 

Hormona Tiroxina

 

Hormona calcitocina

Aumenta la velocidad metabolica de la mayoría de las células

Participa en el crecimiento y desarrollo

 

Inhibe la liberación de calcio a partir de los huesos 

Paratiroides

Paratohormona  Estimula la liberación del calcio de los huesos; promueve la absorción de calcio en los intestinos; promueve la reabsorción de  calcio en los riñones

glandula suprarrenal

Suprarrenal

Hormona Epinefrina  y norepinefrina (adrenalina y noradrenalina) Aumenta la concentraciones de azúcar y ácidos grasos en la sangre; incrementa la velocidad metabólica; incrementala velocidad y fuerza de las contracciones del corazón; constriñe algunos vasos sanguíneos
Corteza suprarrenal 

Hormonas glucocorticoides

 

Aldosterona 

Testosterona

Aumenta la concentración de azúcar en la sangre; regula el metabolismo de azúcares, lipidos y grasas; tiene efectos antinflamatorios

Aumenta la reabsorción de sal en el riñón

Ocasiona masculinización de las características corporales, crecimiento

Páncreas

Insulina 

 

 

 

Glucagón

Disminuye las concentraciones de glucosa en la sangre al aumentar la ingesta de de glucosa hacia el interior de las células y al convertir la glucosa en glucógeno, especialmente en el hígado; regula el metabolismo de las grasas.

 

Convierte el glucógeno en glucosa, elevando las concentraciones sanguíneas de glucosa.

Ovarios

Estrógenos 

 

Progesterona 

Ocasiona el desarrollo de características sexuales secundarias femeninas y la maduración de los óvulos; promueve el crecimiento de la capa que limita e útero (llamada endometrio)

Estimula el desarrollo de la capa que limita al útero y la formación de la placenta

Testiculos

 

Testosterona Estimula el desarrollo de los genitales y características sexuales secundarias masculinas; estimula la espermatogénesis